A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains
نویسندگان
چکیده
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of skin and soft tissue infections. One of the highly successful and rapidly disseminating clones is MRSA ST22 commonly associated with skin tropism. Here we show that a naturally occurring single amino acid substitution (tyrosine to cysteine) at position 223 of AgrC determines starkly different ST22 S. aureus virulence phenotypes, e.g. cytotoxic or colonizing, as evident in both in vitro and in vivo skin infections. Y223C amino acid substitution destabilizes AgrC-AgrA interaction leading to a colonizing phenotype characterized by upregulation of bacterial surface proteins. The colonizing phenotype strains cause less severe skin tissue damage, show decreased susceptibility towards the antimicrobial LL-37 and induce autophagy. In contrast, cytotoxic strains with tyrosine at position 223 of AgrC cause infections characterized by inflammasome activation and severe skin tissue pathology. Taken together, the study demonstrates how a single amino acid substitution in the histidine kinase receptor AgrC of ST22 strains determines virulence properties and infection outcome.
منابع مشابه
Host-pathogen Interactions in Invasive Staphylococcus Aureus Infections
Staphylococcus aureus is a versatile human pathogen causing a wide range of diseases from uncomplicated skin and soft tissue infections to life-threatening invasive diseases like endocarditis, bacteremia, necrotizing pneumonia, and fasciitis. The pathogen has become increasingly resistant to -lactam antibiotics, and of special concern is the rise in communityacquired (CA)-MRSA strains, as spec...
متن کاملComplete Genome Sequence of the MRSA Isolate HC1335 from ST239 Lineage Displaying a Truncated AgrC Histidine Kinase Receptor
Methicillin-resistant Staphylococcus aureus (MRSA) is still one of the most important hospital pathogen globally. The multiresistant isolates of the ST239-SCCmecIII lineage are spread over large geographic regions, colonizing and infecting hospital patients in virtually all continents. The balance between fitness (adaptability) and virulence potential is likely to represent an important issue i...
متن کاملDetection of ST772 Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus (Bengal Bay clone) and ST22 S. aureus isolates with a genetic variant of elastin binding protein in Nepal
Genetic characteristics were analysed for recent clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus (MRSA and MSSA respectively) in Kathmandu, Nepal. MRSA isolates harbouring Panton-Valentine leukocidin (PVL) genes were classified into ST1, ST22 and ST88 with SCCmec-IV and ST772 with SCCmec-V (Bengal Bay clone), while PVL-positive MSSA into ST22, ST30 and ST772. S...
متن کاملDNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony.
A diagnostic microarray was used to characterise a collection of methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitals in the German region of Eastern Saxony. The most abundant epidemic MRSA (EMRSA) strains were ST5-MRSA II (Rhine-Hesse EMRSA, EMRSA-3), CC5/ST228-MRSA I (South German EMRSA), ST22-MRSA IV (Barnim EMRSA, EMRSA-15) and ST45-MRSA IV (Berlin EMRSA). Other strain...
متن کاملWithin-host diversity of MRSA antimicrobial resistances
OBJECTIVES MRSA is a major antimicrobial resistance (AMR) pathogen. The reservoir of infecting isolates is colonization, which is the site of evolutionary selection. The aim was to identify if AMRs in colonizing MRSA populations diversified and potential mechanisms of resistance gene transfer in vivo. METHODS Nasal swabs from 38 MRSA carriers admitted to hospital were plated and 20 individual...
متن کامل